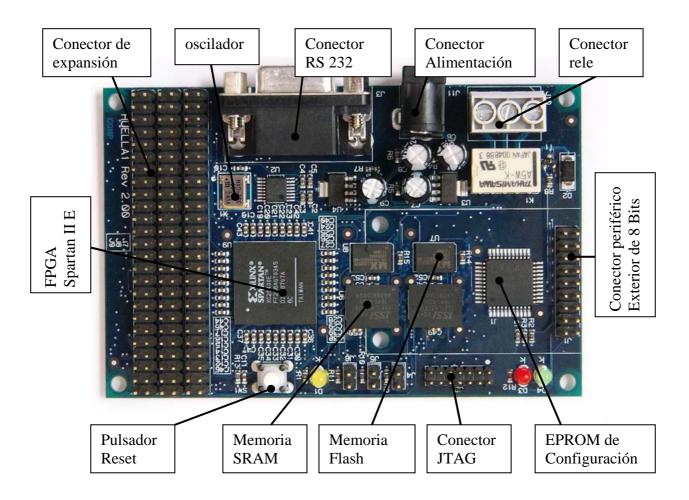
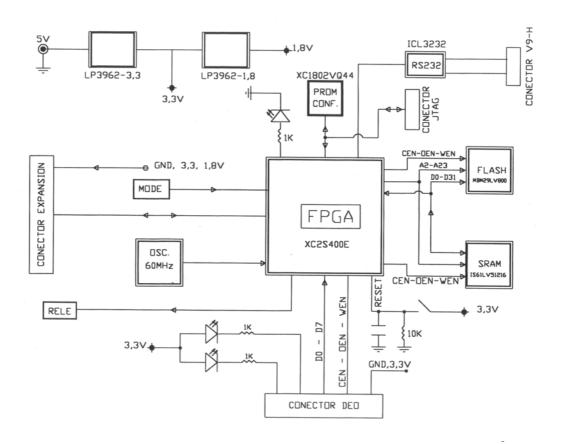


TARJETA DE DESARROLLO DE SISTEMAS CON TECNOLOGÍA FPGA.

Características Técnicas:

- FPGA de Xilinx XC2S400E
- ISP PROM XC18V04
- Memoria RAM estática: 2Mbytes
- Memoria FLASH: 4 Mbytes
- Temperatura de almacenamiento: entre −20°C y 80°C.
- Temperatura de funcionamiento: entre 0°C y 60°C.
- Tamaño del módulo: 64x99mm
- Interface RS232
- Alimentación: 5V
- Consumo: 1200 mA
- Conector de expansión de 150 pines
- Conector JTAG

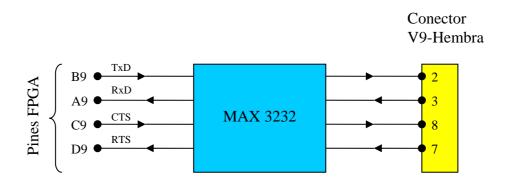

La tarjeta de desarrollo **HUELLA 1** de **Van Microsistemas, SL** es una completa solución para la realización de diseños y aplicaciones, basada en tecnología FPGA y utiliza una Spartan-2E de Xilinx.


El kit consta de una tarjeta, un alimentador de 5V, manual de referencia y un disco con un ejemplo de configuración con un sistema que utiliza un Microblaze con memoria externa SRAM y FLASH, un puerto serie y GPIO.

La tarjeta utiliza un chip de 400.000 puertas Xilinx Spartan2E (XC2S400E-FT256) con una matriz de 256 pines tipo FPGA (fine-pitch ball grid arrays).

Incluye memoria EPROM de configuración de la FPGA, 2 Mbytes de memoria RAM estática (SRAM), 4 Mbytes de memoria FLASH, un puerto serie, conector JTAG y conector de expansión de 150 pines.

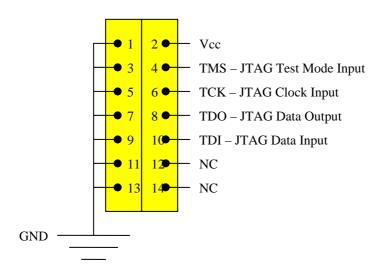
La alta densidad de puertos, el gran número de pines entrada/ salida (IOs) así como la memoria externa SRAM y FLASH, permiten al usuario, realizar la implementación de un diseño de bajo coste, en un tiempo record para obtener un producto final. La figura 1 muestra la tarjeta de desarrollo y sus características:

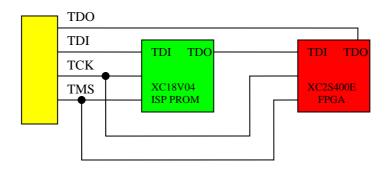

FPGA-Spartan 2E

La tarjeta de desarrollo utiliza el dispositivo FPGA Spartan 2E XC2S400E-FT256. La familia Spartan 2E de 1,8V, da al usuario un gran rendimiento y abundantes recursos lógicos. Internamente contiene 400.000 puertas, 10.800 celdas lógicas, 2.400 CLBs, 153.000 bits de memoria distribuida y 160 Kbits de bloques de RAM.

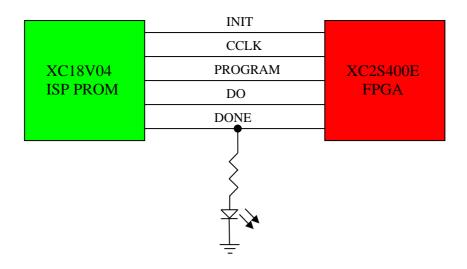
La familia Spartan 2E es una alternativa avanzada para los programadores de ASICs. FPGA acorta el tiempo de desarrollo de un proyecto y permite la actualización del hardware sin necesidad de reemplazar componentes, cosa imposible en ASICs.

Puerto RS232


La tarjeta contiene un puerto serie RS232 que se maneja directamente desde la FPGA. Un driver MAX3232 cambia de nivel las señales necesarias para una comunicación serie, TXD, RXD, RTS y CTS.


Puerto JTAG

La tarjeta contiene un puerto JTAG que puede ser usado para enviar la configuración de la FPGA directamente desde un PC, ó grabar la configuración de la FPGA en la ISP PROM (XC18V04) para que esta se cargue en la FPGA en el momento de dar alimentación al sistema.


Conector JTAG

Cadena JTAG

Conexión ISP PROM-FPGA

Reguladores de voltaje

La tarjeta contiene 2 reguladores de voltaje, uno de 3'3V (LP3965-3'3) Para alimentación de los dispositivos externos de la FPGA y puertos de entrada/ salida (VCCO) y otro de 1'8V (LP3965-1'8) para alimentación interna de la FPGA (VCCINT).

Spartan 2E. Modos de configuración

<u>Modo</u>	PC pull-up	J4(M0)	J5(M1)	J6(M2)
Master serial	NO	ON	ON	ON
Master serial	SI	ON	ON	OFF
Slave serial	NO	OFF	OFF	OFF
Slave serial	SI	OFF	OFF	ON
Slave parallel	NO	ON	OFF	OFF
Slave parallel	SI	ON	OFF	ON
JTAG	NO	OFF	ON	OFF
JTAG	SI	OFF	ON	ON

Pines libres de la FPGA que pueden ser usados desde el conector de expansión, para dispositivos externos a la tarjeta. Los marcados I/O son pines de propósito general, CLK entrada de reloj o pines de propósito general.

1	D1	I/O		3,3	2	1	L3	I/O		3,3	2	1	G13	I/O		3,3	2
3	D3	I/O	C2	I/O	4	3	C1	I/O	D2	I/O	4	3	E14	I/O	D15	I/O	4
5	E4	I/O	E2	I/O	6	5	E1	I/O	F4	I/O	6	5	D14	I/O	B8	CLK	6
7	F1	I/O	F5	I/O	8	7	G5	I/O	G3	I/O	8	7	A12	I/O	D12	I/O	8
9	G1	I/O	H4	I/O	10	9	НЗ	I/O	H2	I/O	10	9	A11	I/O	E10	I/O	10
11	J2	I/O	J3	I/O	12	11	J1	I/O	K1	I/O	12	11	C15	I/O	A14	I/O	12
13	L1	I/O	L2	I/O	14	13	K4	I/O	K5	I/O	14	13	A7	I/O	E7	I/O	14
15	M1	I/O	N1	I/O	16	15	L4	I/O	L5	I/O	16	15	E6	I/O	D5	I/O	16
17	N2	I/O	N3	I/O	18	17	P1	I/O	P2	I/O	18	17	P4	D0	R4	D1	18
19	T13	I/O	N11	I/O	20	19	M11	I/O	P12	I/O	20	19	Т3	D2	T4	D3	20
21	P13	I/O	T14	I/O	22	21	R14	I/O	H14	I/O	22	21	N5	D4	P5	D5	22
23	F16	I/O	H13	I/O	24	23	G14	I/O	F15	I/O	24	23	R5	D6	T5	D7	24
25	F14	I/O	E15	I/O	26	25	D16	I/O	F13	I/O	26	25	N6	D8	P6	D9	26
27	C16	I/O	G12	I/O	28	27	F12	I/O	E13	I/O	28	27	R6	D10	T6	D11	28
29	A13	I/O	B13	I/O	30	29	C12	I/O	B12	I/O	30	29	M6	D12	N7	D13	30
31	E11	I/O	D11	I/O	32	31	C11	I/O	B11	I/O	32	31	P7	D14	R7	D15	32
33	D10	I/O	C10	I/O	34	33	B10	I/O	A10	I/O	34	33	T7	D16	M7	D17	34
35	T9	CLK	Т8	CLK	36	35	A8	I/O	D8	I/O	36	35	N8	D18	P8	D19	36
37	D7	I/O	A5	I/O	38	37	B5	I/O	D6	I/O	38	37	R8	D20	P9	D21	38
39	C5	I/O	E3	I/O	40	39	M2	I/O	M3	I/O	40	39	N9	D22	T10	D23	40
41	F3	I/O	F2	I/O	42	41	M4	I/O	R9	I/O	42	41	R10	D24	P10	D25	42
43	G4	I/O	G2	I/O	44	43	T12	I/O	N12	I/O	44	43	R11	D26	T11	D27	44
45	H1	I/O	J4	I/O	46	45	R13	I/O	H15	I/O	46	45	N10	D28	M10	D29	46
47	K2	I/O	К3	I/O	48	47	G15	I/O	E16	I/O	48	47	P11	D30	R12	D31	48
49	Gnd		gnd		50	49	gnd		gnd		50	49	gnd		gnd		50
					-			·		·	-						_

El software y cables necesarios para desarrollar con la Spartan 2E de Xilinx es el siguiente:

- **ISE**
- **EDK**
- **MODELSIM**
- PARALLEL CABLE IV
- Opcionalmente CHIPSCOPE PRO ANALIZER

Estos pueden adquirirse en SILICA, una compañía de Avnet representante de Xilinx en España. (Sergio Ocaña 00 34 913727146)

